
PAGEOPH, Vol. 147, No. 4 (1996) 0033 4553/96/040675 4451.50 + 0.20/0 
�9 1996 Birkhguser Verlag, Basel 

Scattering of P and S Waves by a Spherically Symmetric Inclusion 

VALERI A. KORNEEV l a n d  LANE R. JOHNSON 

Abstract --Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is 
considered and solutions are developed in terms of the spherical vector system of Petrashen, which 
produces results in terms of displacements rather than displacement potentials and in a form suitable for 
accurate numerical computations. Analytical expressions for canonical scattering coefficients are ob- 
tained for both the cases of incident P waves and incident S waves. Calculations of energy flux in the 
scattered waves lead to elastic optical theorems for both P and S waves, which relate the scattering cross 
sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions 
for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with 
scattering cross sections that demonstrate important differences between these types of obstacles. A 
general result is that the frequency dependence of the scattering is defined by the wavelength of the 
scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that 
the intensity of the P ~ S  scattering is generally much stronger than the S - ~ P  scattering. When 
averaged over all scattering angles, the mean intensity of the P - ,  S converted waves is 2 Vp 2 / V 4 times the 
mean intensity of the S ~ P  converted waves, and this ratio is independent of frequency. The exact 
solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh) 
approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing 
inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the 
result that an increase in attenuation within the inclusion causes an increased scattering cross section 
with a marked preference for scattered S waves. The complete generality of the results is demonstrated 
by showing waves scattered by the earth's core in the time domain, an example of high-frequency 
scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves. 
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1. I n t r o d u c t i o n  

T h e  ea r th  is i n h o m o g e n e o u s  on  a w ide  r ange  o f  scales a n d  a va r i e ty  o f  m e t h o d s  

h a v e  been  d e v e l o p e d  in s e i s m o l o g y  fo r  a n a l y z i n g  the  effects  o f  this i n h o m o g e n e i t y .  

T h e  t h e o r y  o f  w a v e  sca t te r ing ,  as d e v e l o p e d  in the  fields o f  opt ics  a n d  acous t ics ,  

has  been  a d a p t e d  to the  case  o f  e las t ic  waves  a n d  has  been  qu i te  useful  in s tudy-  

ing  ce r t a in  types  o f  i n h o m o g e n e i t y .  F o r  ins tance ,  AKI  (1969) a t t r i b u t e d  the  c o d a  

waves  f r o m  loca l  e a r t h q u a k e s  to  sca t t e r ing  in the  l i thosphere ,  AKI  (1973) used  
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scattering theory to study the phase and amplitude fluctuations of waves arriving at 
a seismic array, HADDON and CLEARY (1974) interpreted the precursors to PKIKP 
as due to scattering near the mantle-core boundary, and AKI (1980) considered the 
role of scattering in the attenuation of waves. In parallel with these applications of 
scattering, the necessary extensions in the theory of elastic wave scattering were also 
developed (see for example Wu and AKI, 1985a, 1985b). KORNEEV and JOHNSON 
(1993a, 1993b) discuss the background for both the exact and approximate theoret- 
ical developments in this area. A rather different application of scattering theory to 
seismological problems has involved the derivation of asymptotic solutions which 
are valid at high frequencies. The literature for this approach is extensive and 
includes SCHOLTE (1956), NUSSENVEIG (1965, 1969), PH1NNEY and ALEXANDER 
(1966), LUDWIG (1970), CHAPMAN and PHINNEY (1970, 1972), RICHARDS (1973, 
1976), CHAPMAN (1974), ANSELL (1978), and CORMIER and RICHARDS (1977). 
More recently, CORMIER (1995) has combined high and low frequency approxima- 
tions to study scattering near the mantle-core boundary. 

The full treatment of elastic wave scattering is not a simple task, and most 
seismological studies have employed various approximations in their use of scatter- 
ing theory. These include the assumption of only one type of wave (acoustic 
approximation), the assumption of a low contrast in material properties (Born 
approximation), the assumption of low frequencies (Rayleigh approximation), and 
the assumption of high frequencies (ray approximation). While these approxima- 
tions appear to be reasonable in many cases, a rigorous justification of their use is 
difficult. One method of checking the validity of the approximations is to compare 
them with exact analytical solutions. The purpose of this paper is to develop and 
discuss the properties of one such solution, the scattering of plane P waves and S 
waves by a spherical inclusion. 

A spherical inclusion is the most convenient choice as a test model for 
comparison with approximate solutions. It is one of the few objects for which the 
scattering problem has an exact and computationally tractable solution, and it has 
the desirable property of being describable by a minimum number of parameters. 
The treatment of the canonical scattering problem for the sphere has a long history. 
For light scattering it was formulated by MIE (1908) in terms of a series of spherical 
harmonics, and a comprehensive discussion of this topic can be found in VAN DER 
HULST (1957). Elastic scattering by spherical obstacles has also been the subject of 
many publications, with some authors using potentials in their approach to the 
problem (YING and TRUELL, 1956; TRUELL et al., 1969; YAMAKAWA, 1962; 
NIGUL et al., 1974; MOROCHNIK, 1983a, 1983b) and others using displacements 
(PETRASHEN, 1946, 1950a, 1950b, 1953; KORNEEV and PETRASHEN, 1987). The 
present paper follows this latter approach and a detailed treatment of the analytical 
and numerical aspects of the scattering problem for P waves incident upon a 

spherical inclusion can be found in KORNEEV and JOHNSON (1993a), with a 
discussion of various approximate solutions in KORNEEV and JOHNSON (1993b). 
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These results are extended in the present paper to the case of  an incident S wave so 

that the comparisons can be made between the relative scattering of P waves and 

S waves by various types of  spherical inclusions. 

2. Statement of  the Problem 

Consider a two-part  isotropic medium consisting of a spherically symmetric 

inclusion V1 (part  v = 1) with radius r = R having elastic parameters 21 = 2~(r), 

#1 = #j(r) and density Pl = P l ( r )  which is embedded in a homogeneous elastic 
surrounding medium (part  v = 2) having elastic parameters 2--)~2, # = #2 and 

density p -- P2. The inclusion V1 may contain a number of  internal shells which are 
bounded by spherical interfaces where the material properties or their spatial 

derivatives are radially discontinuous. The boundary conditions on such interfaces 

as well as those at the surface r = R are linear and homogeneous. We assume that 

all elastic displacement fields under consideration have harmonic time dependence 

of the form e j~ where co is the angular frequency. Joint Cartesian {x, y, z} and 

spherical {r, 0, ~b } coordinate systems with the origin at the center of  the inclusion 
will be used. 

Incident from medium v = 2 is a harmonic disturbance with a displacement field 
given by 

fJ0 = Uo(x, y, z) e i~~ (2.1) 

The interaction of this incident wave with the inclusion gives rise to additional 
displacement fields both inside and outside the inclusion, and these are denoted by 

uo = U~(x, y, z), (v = 1, 2). (2.2) 

Since we will be primarily interested in the properties of  the additional disturbance 

outside the inclusion, this field with subscript 2 will be referred to as the scattered 

field Usc - U2. Thus, the total field U in the outer medium v = 2 is a sum of the 
incident wave and scattered field 

U = Uo + U,,.. (2.3) 

The field U, as well as both of its individual components,  must satisfy the equation 
of motion for a homogeneous isotropic elastic medium. 

(2 + 2#)V2U - #V x V x U + pc0~U = 0. (2.4) 

The equation of motion in any spherical shell within the inclusion has the form 

021 
(21 + 2#1)V2U1 - #1V x V x U1 + ~-r  V �9 UI? 

0#1 OU~ ~ r  ~ + 2  c~- 0 ~  + [rxVxUI]-t-PI(~ (2.5) 
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by 
We denote the velocities of the compressional and shear waves and their ratio 

~ ,  ~ V~'~ 
V~p~ ) = +p~2#~ V~) = X/P~' 7<~) - V~p ~) (2.6) 

with the understanding that no superscript implies the surrounding medium, 
Vp - V~ 2), V~ - V(~ 2~, 7 = ? (=~. We require that the scattered field satisfy a radiation 
condition at large distances from the inclusion 

U,~ ~ Ap(O, 4)) e_ik,,._~ As(O, 4)) e iksr, (r - - ->  CO) (2.7) 
r r 

where kp = co/V(p 2~ and k~ = o~/VT~. The functions Ap(0, 4)) and As(O, 4)) will be 
referred to as scattering diagrams of compressional and shear waves, respectively. 

3. Spherical Vectors 

The solution will be developed using the spherical vector system of PETRASHEN 
(1945, 1949). A fairly complete description of this system can be found in KORNEEV 
and JOHNSON (1993a), therefore only the essential elements of the system will be 
listed here. The basis vectors for the system are 

Y~ Y~ , 4)) = r  X VY, m(O, 4)) 

+ 1)fY, m(O, rVYtm(O, (3.1) Yi-m ==- Y,m(O, 4)) = (l + 4)) - 4)) 

Y/~ = Y/m(0, 4)) = lf Y, m(O, 4)) + rVY,  m(O, 4)) 

with the usual definition of the spherical harmonic functions 

Ylm(O, 4))=eimr l > 0 ,  ( - - l  < m < . l ) .  

The vectors of this system are linearly independent at any point (0, 4)) on a 
spherical surface. For l = 0 only the one vector Y•o- f is nonzero. 

In the space of vector functions f(O, 4)) defined on the spherical surface f~ 

0<0<_Tz, 0<4)<2rc ,  df)~=sinOdOd4) 

the basis vectors satisfy the orthogonality relation 

f V*(K) [,,(~)] --2~ " (~ll! " (~mm I (3.2) 
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where the normalizing coefficients are given by the expressions 

/ 2l_+_1_ ( l -m ) !  
cOrn = X/ 4nl(l + 1) ' ( l  + m)! 

x/4 1 (Z-m)! 
C?m= n(/-+ 1) (l +m)! (3.3) 

~ / ~ /  (l - rn)! 
c~= (/Tm)!" 

For vector functions f(O, (o) with a finite norm 

fa lfl: d D -  f f* - f dD < m 

the system of spherical vectors (3.1) is complete in the sense of convergence in the 
mean for a generalized Fourier series expansion of f(0, q~) 

l 

f(0, q~) = Z ~, Z a}2Y~)( O, (~) (3.4) 
~ = 0 , + ,  l=O m - - I  

where 
r 

a ~  -- t~zmjr'O<)12 J~ _V*g ~)-,~ f d Q .  (3.5) 

Using the completeness of the vector system (3.1), we can seek a solution of our 
scattering problem in a form of a series 

•) ~) (~) U(r, 0, ~b) = ~ dt~pt~(r)Y,m(O , (p). (3.6) 
~;j,m 

Because of the spherical symmetry of the present problem, the 3-D scattering 
problem is reduced to a 1-D boundary problem which must be solved for the radial 
functions ~72(r). If the field U is known on any spherical surface r = constant, then 
the expansion coefficients of (3.6) can be determined using the orthogonality of the 
spherical vectors 

d(,O,l,(,ot~.'~ r (t~) 12 Sm~'Zmt', = tC/ml Y*t,~(O, q~)" U(r, O, ~b) d~. (3.7) Jo 

4. Basic Expressions 

In the case of elastic wave propagation in a medium with spherical symmetry a 
critical element is the traction vector on a surface r = constant, which has the form 

OU 
tr(U) = 2V. Uf + 2# ~ r  + ~[f x V x U]. (4.1) 
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If the field U is taken to have the form (3.6), then the corresponding traction vector 
has the form 

y, Tim (r)Yt,~ , (0, ~b) (4.2) 
Gl, m 

where the expansion coefficients are given by 

+ Tim(r) - 

T~ = alm#~- ~r (4 .3)  

T~o(r)=dgoI(,t + 2#)(~r~ + 2 O--~176176 1 (4.4a) 

21 + 1 ((l + 1)2 + ( 3 / +  2)#) ~ - r  + (l + 2)(( /+ 1)2 - l#) 

+ dF~l(221 ++ #)1 \~--r(a*'m --(l--1) ~ )  (4.4b) 

( l +  1)(2 + #)(3OI,-L + ( / +  2) ~j~_ ) 
T~(r) = d + 2l + 1 \~-r 

dFm [ O~OFm --12)~) + 2 ~  (12 + ( 3 / +  1)#) ~ - r  + (l - 1)((1 + 1)12 (4.5) 

Note that the coefficient "tmm~ remains coupled with the same vector Y}~ q~) in the 
expression for both the displacement (3.6) and the traction (4.2). Differential 
equations for the radial functions Ot2(r) can be obtained by substituting (3.6) into 
(2.5) and using the orthogonality of the spherical vectors. Solutions in the form of 
power series for the general case can be found in KORNEEV (1983), but in this 
paper the emphasis will be on the special case of a homogeneous sphere. 

In the dynamic theory of elasticity it is useful to consider displacement field as 
a sum of irrotational (P) and solenoidal (S) fields 

which satisfy the conditions 

U = Up + Us (4.6) 

V x U p = O ,  V 'Us - - -O  (4.7) 

and represent compressional and shear waves, respectively. Since V. O(r)Y~ qS) - 
0 and V x r - 0 the fields (4.6) have the form 

+ + up (F,,o(r)Y,m + 
l >_ 0,1ml -< l 

(4.8) 

Us = ~ {fh~(r)Y,m~ o +f[m(r)ytm+ + +fi-.,(r)YF~ } (4.9) 
l_> 1,1ml < Z 
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where for l > 1 the radial functions must satisfy the equations 

0F~  ( / _ l )F~7 ,  0F?,~ (/ + 2) F[" = (4.10) 
c3r r Or r 

I ) ( ~ +  (l + 2 ) f ~ )  = O. (4.11) 

In the case of  a homogeneous isotropic elastic medium, the displacement field U 
must satisfy the equation of motion (2.4). Substituting the expressions (4.8) and 
(4.9) into (2.4) and using the orthogonality of the spherical vectors, one obtains 
differential equations of the second order for the radial functions. These equations 
have general solutions of the form 

F[,~(r) =a)mjl+1(kpr ) 2+ k r +alm h / + l (  p ) 

F~(r)  -- a)mj,_ ,(kpr) + a2.. h,_, (kpr) 

f L ( r )  = 

f ,m(r)  = 

f~  = 

1 +  " b,,./,+1 (ksr) + b~ + h,+l (ks,') 

I 0  " 2 0  ctmjr(k~r) + ct,,hz(ksr). (4.12) 

The solutions here have been constructed as a linear combination of  two indepen- 
dent solutions, the spherical Bessel functions j ,(kr) and the spherical Hankel 
functions of the second kind hn(kr). Fields which are regular at the origin will 
contain only the spherical Bessel functions, whereas secondary scattered fields 
which must satisfy the radiation conditions of the form (2.7) when r ~ oo will 
contain only the Hankel functions. The differential equations (4.10) and (4.11) in 
this case reduce to 

a,,,n+ =-a , , ,n- ,  (l + 1)b72 = lb,mn-, (n = 1, 2). (4.13) 

We assume that the source is located outside the obstacle so the incident wave 
U 0 is regular at the origin and the radial functions of this wave will contain only the 
spherical Bessel functions. Thus the general case for the incident field U0 is given by 
the expression 

Uo = Y~ {~~176 + [a~ ( k / )  + tb~ (~OlY?m 
1,m 

+ [ - a % j , _ ,  (kpr) + (l + 1)b~ (k,r)]V,; ,  } (4.14) 

with aribtrary coefficients a~ for the P disturbance and coefficients b fro,~ ctm,~ for the 
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S disturbance. Introducing a. set of "canonical" incident waves defined as 

P,,, =Jt+~ (kpr)V~-m(O, (9) - j ; _  ~ (kJ)Yzm(O, r 

SVlm = ~,+1 (ksr) Y ?m(O, (~) + (I + l)j,_ ~ ( k j )  Y ~  (O, ~) 

sn,~ =j,(ksr) Y~ 4~) 

we can represent (4.14) as the linear combination 

(4.15) 

U0 = ~, {a~ + b~ SV,,, + c~ SHz., }. (4.16) 
/,m 

Each of the waves of (4.15) satisfies the equation of motion (2.4). The wave Plm is 
a pure compressional wave and SVlm and SHim waves are both shear waves. 

Now consider the incidence of canonical waves of the form (4.16) on the 
inclusion VI. Substitution of the field U1 having the form (3.6) into the equation of 
motion (2.5) leads to a separate set of differential equations for radial functions for 
any pair of indices l, m. Moreover, the equation for determining ~/~ separates 
from those for 6I-m(r) and ~g,(r). Also, note that the azimuth index m is not present 
in any of the coefficients of the differential equations. The boundary conditions on 
the surface r = R of the inclusion are required to be linear and homogeneous. For 
a welded elastic-elastic interface they have the form 

U I = U 0 + U ~ c  and t~l)[Ul]=t~2)[U0+Usc] (4.17) 

with the usual modifications for elastic-fluid and elastic-free interfaces. Again, 
because of orthogonality of vectors (3.1), separate boundary equations may be 
obtained for any pair of indices l, m, and in the present problem these equations do 
not depend upon the index m. The canonical field Ptm will excite in the medium 
v = 2 a scattered field of the form 

P S  . + U~,~ = [a~eh,+ l(kpr) + lb, h,+ l(k~,)]Y,,~ 

+ [ -a~t 'h t_~ (kpr) + (l + 1)b~Sh1_ 1 (k~r)]YL. (4.18) 

The canonical field SVzm will excite in the medium v = 2 a scattered field 

S V _ _  U,,~ - [a Seh,+ l (kpr) + lbSSh,+ l (ksr)lY•,, 

+ [ -a~eht_~ (kpr) + (1 § 1)bSShz_~ (k~r)]Y~. (4.19) 

and the field SHIm will excite in the medium v = 2 the scattered field 

U,,Sg = cShz(ksr) Y~  m. (4.20) 

The set of coefficients a~ 'e, asp, b ss, b~ 's, c s which are contained in these 
expressions will be called the canonical scattering coefficients for the inclusion V~. 
They may be found as solutions of linear systems following substitution of the 
relevant expressions into the boundary conditions and using the orthogonality of 



Vol. 147, 1996 Scattering of P and S Waves 683 

the spherical vectors. Analytical formulas for these canonical scattering coefficients 
for the case of a homogeneous elastic spherical inclusion, as well as for the special 

cases of a fluid filled spherical inclusion and a spherical cavity, are given in 
Appendix A. These will be discussed in more detail later. It is worth noting that the 
use of these analytical solutions produces results with about two orders of  magni- 

tude better accuracy than the commonly used direct numerical solution of the linear 
matrix equations. 

Once the canonical scattering coefficients are known, an incident field (4.16) 
specified by the coefficients a~ bzm,~ CzmO will generate a scattered field which can be 
written as 

Usc E o s o = {CtmC l hl(ksr)Ylm 
Lm 

0 SS o sP ( k p r ) + l ( a O m b ~ S + b , , . b / ) h , + l ( k ~ r ) ] y +  + [(a~ P + bz,.az )hl+l 

110 t, SS 1.o _Sp)h , l(kpr) + (1 + 1)(a~ s + U,mU , )h, ,(ksr)lY,.~ }. + { - ( a ~  + _ 

(4.21) 

This represents the complete solution for the scattered field from a spherical 
inhomogeneous inclusion for an arbitrary incident wave. 

The field U1 inside of the sphere will have the general form of (3.6) and will be 
linearly dependent upon the source coefficients a ~ b~ corn , For  the special case of 
a homogeneous isotropic material inside the inclusion, U~ has the same form as 
(4.21) with all of  the functions hk replaced by the corresponding functions j~ and 
with a new set of canonical coefficients for the inner medium v = 1 (r < R). For  the 

sake of completeness, analytical expressions for this internal set of canonical 
coefficients for the cases of elastic and fluid spheres can be found in Appendix B. 

However, throughout the remainder of this paper only the scattered field outside of 
the inclusion will be considered. 

One method of  determining the coefficients a~ b~ c~ of the incident wave is 
to use (3.7) and integrate the product of the incident field U0 with the correspond- 
ing spherical vector. Thus, for the case of a plane P wave propagating in the 
direction of the positive z axis 

U0 = e-ikpz~ (4.22) 

and 

_ o O. (4.23) O0m - -  e-'(~/2)(l+ 1)6m,0 ' b~ = 0, ct, . = 

For  an incident plane S wave propagating in the direction of the positive z axis and 
polarized along the x axis 

Uo = e-i~sz~ (4.24) 
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and 

1 
at.,~ = O, b~ - 2l(l--+ 1) (l(l + 1 ) t i m , _  l - -  6m, l)e -i(~/2w+ I) 

0 
C l m  = - 

2 l + 1  
2l(l + 1)(l(l + 1)6m,-1 + 6m,1)e -i('~/2)(t+ I). 

For a point pressure source located at the point Ro = (Zo, 0, 0) where Zo > R 

(4.25) 

and 

e ikp I~- Ro] 
Uo = - V  ]r - Ro[ (4.26) 

a o �9 2 = -tkph~(kpzo)6m,O, b~ =0 ,  C0m = 0. (4.27) 

The scattered field (4.21), expressed in terms of spherical unit vectors (f, O, @, for 
the cases of the incident plane P wave (4.22) and the incident plane S wave (4.24) 
is given in Appendix C. 

The convergence of the series (4.21) depends upon the frequency o), the 
observation distance r, the canonical scattering coefficients, and the coefficients of 
the incident field, and each combination of these variables may require a special 
investigation. This, together with the numerical difficulties discussed below, are 
important considerations if accurate numerical results covering a broad frequency 
band are desired, particularly in the time domain. TRUELL et al. (1969) considered 

these problems but were unable to arrive at definitive solutions. The more usual 
situation, such as in VARADAN et al. (1991), is to present numerical results with 
little discussion of the accuracy which has been achieved. The basic problem is to 
estimate the number of  te:~ns that should be included in the series in order to 
achieve a certain level of accuracy. One general guideline is that the number of 
terms which are necessary in order to represent the incident wave on the surface of 
the inclusion at the desired accuracy is a good estimate of the number of terms 
required in the solution series. KORNEEV and JOHNSON (1993a) considered this 
problem for the scattering of a plane P wave and showed that the necessary number 
of terms in the series could be estimated by the formula 

ekpR 
lo = ~ -  + N (4.28) 

where R is the radius of the sphere and N is a constant. A value of N = 15 is 
sufficient to give an accuracy of 10 -s. 

In addition to the matter of convergence, considerable care must be exercised in 
order to obtain accurate numerical results from the series solution (4,21). If any of 
the velocities within the inclusion exceeds the velocity of  the incident wave, some of 
the spherical Bessel functions will have exponential behavior and a straightfor- 
ward calculation of the canonical scattering coefficients will fail. This problem is 
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avoided by expanding the ratios of Bessel functions, such as jk(z)/jl(z) with k = 
l - 1, l + 1, in a Debye approximation. Such a treatment is especially important at 
high frequencies, as the numerical instability is encountered before the solution has 
converged (KORNEEV and JOHNSON, 1993a). The same type of problem is present 
for an incident S wave, where spherical Hankel functions corresponding to the P 
velocity in the surrounding medium occur in the ratios hk(z)/hl(z) and hk(zr/R)/ 
ht(z ) with k -- l - 1, l, l + 1. It is only with attention to matters such as these, and 
the general use of double precision, that numerical results such as those presented 
in a later section can be obtained. 

5. Flow of the Scattered Energy 

A useful method of  characterizing the scattering by an object is to calculate the 
energy of the scattered waves and compare it to the energy of  the incident wave. 
Various forms of this ratio between the scattered and incident energies are called 
scattering cross sections. The energy of the scattered waves can be obtained by 
calculating the energy flux of scattered waves through a surface S that completely 
surrounds the object. Noting that the energy flux through a surface element ds 
having a normal n is given by (U.  tn[U]) and that the energy flux averaged over one 
period is co Im{U-t*[U]}/2, then the total energy flux per period through the 
surface S is given by 

~ F = ~ Im (U t*[U]) ds (5.1) 

where (*) denotes the complex conjugate. 
Substituting the total field (2.3) into (5.1) and assuming conservation of energy 

(no energy absorption by the material), we obtain 

F=F,c  +2Fc = } - I m  (U,c  t*[U,c])ds +co Im (U~c t*[UoJ) ds = 0  (5.2) 

where F,c is the total energy flow of the scattered field and F C describes the energy 
of coherent interaction between the scattered field U~.c and the incident field U0. 
Physically, the phenomena of scattering describes the conversion of part of the 
energy of the primary incident wave into the energy of the secondary scattered 
waves. Therefore, after the incident wave has interacted with the inclusion, it should 
have lost part of its energy. However, the formal solution (2.3) leaves the incident 
wave undisturbed. This means that the additional field Usc of (2.3) must include 
both the change in the primary wave along with the secondary scattered waves. We 
will return to this problem later when considering the scattering cross sections of 
elastic spheres. 
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To calculate the energy flow F,~ of the scattered field (4.21) caused by the incident 
field (4.16) we need expressions for the tractions associated with both of these fields. 
Since total energy flow does not depend on the shape of the surface S, we let S be 
a spherical surface of radius r, which is arbitrary to the extent the inclusion is contained 
inside S. The traction vector t~(U~) of the field Us~ on this surface has the form 

0 S 0 L(Usc) ~ {ClmCl CzYI~, + o pe o sp se + =- [(az,~at +blma l A )AI +l(aOmb~S+l.o~,t~,lz.ss~+~,_,l ]Yl~+ 
i,m 

where 

0 S S  - ~o ~SP)A F _ ( l  + l)(ao~b;s + bzm b, )B, IYFm} (5.3) q- [(a~ p q- ~,mU, 

C, = ~- [ksrhl_ 1 (ksr) - (l + 2)h,(ksr)] (5.4) 
f 

A~ kpr ( l+2)h ,+l(kpr)~  
AF } =  ~- I-~T h,(kpr) - 2{(l (5.5) r - 1)h,_,(Gr) H 

B?- 
; = k, rh,(ksr) (5.6) 

B ? )  r 1)h ,_ , (ksr) ) /  

The traction vector for the incidence field (4.16) can be obtained from (5.3) by 
setting all canonical scattering coefficients equal to one and by substituting for all 
spherical Hankel functions the corresponding Bessel function in (5.4)-(5.6). 

The next step is to make all of the necessary substitutions in (5.2) and perform 
the integration over S. This is accomplished by applying the orthogonality relations 
of the spherical basis vectors (3.1) and then performing a series of manipulations 
making use of recurrence relations and Wronskians of the Bessel functions. The 
final result, after a considerable amount of algebra, is 

F, c = F~c + Fs s 

= 2~z(2 + 2#)Vp Z (2 /+  1) (l + m)! .o .ep + bOaSP 12 
1,m ~ t't l m ~  l 

+ 2zr(2 + 2u)Vp Z (2 /+  1) (l + m)! t,~ ~ l(l + 1)~ 3 

EIc~ bo,b, ,12] x L(2/+ 1) 2 + [a~ es + (5.7a) 

which can also be expressed as 

F~c -27z(2 + 2#)Vp ~ (21+ l) (l + m)? { = Re{am, blma I } Cm (l--m)!  [a~ .o o se 

+ Re{al,.bl..bz } + l ( 1 + , .  o . o  . ; '  

(5.7b) 
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This is an exact result that is valid for any r > R that does not enclose the source 

r < Ro, and the derivation has not made use of the usual assumption that r -+ oo. 

At distances greater than that of the source, r > R0, the above result is easily 
modified by including the energy flow out of the source. The part F~c corresponds 
to the energy flow at the scattered P waves and the part F~c corresponds to the 
energy flow of the scattered S waves. As can be seen, the combined incidence of 

both P and S waves on the inclusion can cause constructive or destructive 
interference in the scattered field. 

The equation (5.7) must be true for any set of coefficients for the incident wave 

(4.16), which leads to the following four independent relations between the canon- 
ical scattering coefficients 

]cSl 2 = - R e { c  s } (5.8) 

]a~V [z + l(l + 1)73]b~S] 2 = - Re{a~ P } (5.9) 

[aSP[ 2 + [(l + X)~/3[bSSI 2 = - l ( l  + t )7 3 R e { b  s s  } (5.10) 

2(a~/ea *se + l(l + 1),/3bfSb~ s s )  = - a ~  se - l(l + 1)73b~ s. (5.11) 

Multiplying (5.11) first by a s*, and then by b~ ps and eliminating the quantity 
aSPb~S leads to the expression 

]a se 1211 -]-2a~'P ] 2 : /2(1 + 1)276[b~S[211 § 2bSSp. 

Using the equivalences (5.9) and. (5.10), this equation reduces to 

[a s ,  [2 : 12(l + 1)2y6[brS [2. (5.12) 

The equivalences (5.8) - (5.10) will be used in the next section in formulating optical 
theorems. The last equivalence (5.12) will be used later when considering the 
relation between P ~ S  and S ~ P  scattering. The equivalences (5.8)-(5.12) are 
also useful in verifying the accuracy of numerical calculations. 

It is worth noting that the result (5.7) would also have been obtained if the 

radial functions had been reduced to their far-field asymptotic expressions before 
substituting into (5.2). This means that the net energy flux due to the near-field 

terms in the solution is zero. However, as shown by KORNEEV and JOHNSON 

(1993a), these near-field terms can significantly affect the displacement field formed 
in the vicinity of the inclusion. 

6. Scattering Cross Sections and Optical Theorems 

Here we consider the special cases of an incident field consisting of either a 
plane P wave or a plane S wave. Earlier we obtained the coefficients (4.23) and 
(4.25) which represent these waves in terms of the spherical vectors (3.1). Now we 
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introduce the scattering cross section o- as the ratio 

Fsc 
= - -  (6.1) 

Fo 

which is the energy flow Fsc of the scattered field normalized by the energy flow Fo 
of the incident wave per unit area normal to the direction of propagation. 

We begin with the case of the incident plane P wave (4.23). For this wave the 

energy flow per unit area of the incident wave is 

o) 
Fg = (2 + 2#)kp 5 (6.2) 

Substituting coefficients (4.23) into (5.7) we get the scattering cross section 

F P 
• p  ~- sc ~ (~pp .@ ~ P S  

Fg 

4~ 
= k-~ z_>0 ( 2 / +  1){[a~ p I z + l(l + 1)73]b~ s ]2} 

- i ,  

(6.3a) 

(6.3b) 

On the other hand, putting the coefficients (4.23) into the expression (4.21) for the 
scattered field and using the asymptotic representation 

1 e - i ( z -  0z/2)(/+ 1)) (Z >> l) hi(z) ~ -  
Z 

for the spherical Hankel functions, we obtain for 0 = 0 

e - i kpr  ^ 

U~c(0) = Ap(0) - -  z (6.4) 
r 

where 

Ap(0) = kpp l_>o ( 2 / +  1)a~ P. 

Comparing (6.3) and (6.5) we have the equation 

(6.5) 

~ p = _ 4_~ Im{Ap(0) } (6.6) 

which is the optical theorem for an incident plane P wave. This equation establishes 
a connection between the scattering cross section and the amplitude of the scattered 
field in the forward direction. 



Vol 147, 1996 Scattering of P and S Waves 689 

For an incident plane S wave (4.25) the procedure for obtaining an optical 

theorem is similar. The energy flow per unit area of the incident S wave is 

k (D FS = # " 2  (6.7) 

Then, using the coefficients (4.25) in (5.7) we have 

a~ = F,~. _ crsp + as  s 
Fg 

2re a (2l+ 1) se 2 -  2~z ~ (21 Ubf~l ~+ ~ks~,~,/(/+1) la, j ~ , ~ ,  +1)( Icflb (6.8a) 

2re 
- ,75 L ( 2 / +  1) Re{b ss +cS} .  

ks i>_l 

The forward scattered shear wave in the far field has a form 

(6.8b) 

e - i k s r  ^ 

Us(0)  = As(O ) - -  x (6.9) 
r 

where 

i ~ ( 2 / +  1) (bSS+c~) .  (6.10) As(O ) = ~ ,>_, 

Comparing (6.8) and (6.10) we have 

47~ 
a s - Im{As(0) } (6. l l) 

k, 

which is the optical theorem for an incident plane S wave. Optical theorems such 
as this and (6.6) can be useful in studying the attenuation of waves due to 
scattering. 

7. Compar&on o f  P --* S and S --* P Scattering 

The equivalence (5.12) allows one to compare scattering of converted waves for 
the same scatterer. Applying (5.12) to (6.3a) and (6.8a) we see that the scattering 
cross sections for converted waves are connected by the simple relation 

2 as  P a P s =  ~5 . (7.1) 

This equation says that the scattering cross section of P ~ S  converted waves is 
significantly larger than that for S --, P converted waves. This result is valid for any 
spherically symmetric scatterer. 



690 V.A. Korneev and L. R. Johnson PAGEOPH, 

In practice one deals with the amplitudes of scattered waves, and so it is useful 
to also estimate the mean intensity (squared amplitude) of  the field. Using the 
far-field approximation, the mean intensity of the scattered field for an incident 
plane P wave has the form 

1 12 - k ~  r2,>o ~ (21+l ){ la~  e +l(l+l)?21b(Sl2 ) 

ff PP o.PS 

- 4rcr 2 -~ 4x?r 2 -~ Ipe + Ies (7.2) 

where the integration is taken over a spherical surface at the radius r > R in the 
far-field zone. Similarly, for an incident plane S wave we have 

1 fn [Uscl2dn 

1 ~ ( 2 l + 1 )  1 
(2l + l)(]bSS r +tcS] 2) + ~  

- l ( 1 +  1) 
z.. 

_ ks r l>1 

•SP o.SS 

= ~ ~ + 47zr ~ =- Ise + Iss. (7.3) 

Using the equivalence (5.12), we have for the ratio of the mean conversion 

intensities 

Ips 1 a es 2 (2 + 2#) 2 
is p ?2 asp 74 2 ]~2 (7.4) 

Thus, if the comparison is made between the intensities of the waves rather than the 
energy flux of (7.1), the asymmetry in the average conversion P and S waves by 
scattering is even larger. Note that this is a general result that holds for all 
frequencies. For  the "typical" seismic situation where ~ = 1/,,/3, the ratio (7.4) is 
equal to 18. For  soft media, where ? is even smaller in a relative sense, this ratio 

could be significantly larger. 
For  the case of homogeneous spherical inclusions (elastic, fluid or cavity), an 

even stronger result can be obtained which involves no spatial averaging. First, note 
that the converted far field for the incident plane P wave (4.22) is easily obtained 
from (C.1) and has the form 

Ues ,~ - i  ~ (2l + 1)b~ s e-Gr ~Pl(cos 0) ~ = Aes(O) ' O) e-k~r ^ 
l>_1 ksr 00 r 0 (7.5) 

where Aes(CO, O) is a scattering coefficient for converted P ~ S waves. Similarly, for 
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the incident plane S wave (4.24) the converted far field can be derived from (C.3) 

>~1 (2l + 1) e-k~r e-k~,- 
Usv ~ - i  cos ~b, l(l + 1) asp k - ~  P~(cos 0)f = Asp(Co, O, (~) --r ~ (7.6) 

with the scattering coefficient Asv(Co, O, qS). Now for the case of a homogeneous 
inclusion it follows from the solution listed in Appendix A that 

a S P  = y3t(l + 1)bf s. (7.7) 

Using (7.7) in (7.5) and (7.6) we have the relation 

Asp(Co, 0, 4)) = -7~  cos qS- Aps(co, 0). (7.8) 

Thus, in the far field the scattering coefficients of the converted waves have the 
same functional dependence on frequency co and angle 0. For the case of an 
incident P wave the problem has axial symmetry so Ap s has no dependence upon 
~b, but this is not true of Asp. 

AI(I (1992) arrives at a result similar to (7.4) and (7.8) using a more general 
approach involving the reciprocal theorem. He considered only the case in which 
the polarization of the P and S waves was in the same plane (~b = 0), and thus 
obtained an equation similar to (7.8) without the cos ~b term. Consequently, 
because the average value of cos 2 ~b is 1/2, his equation for the squared amplitudes 
does not contain the factor of 2 found in (7.4). The approach of AK~ (1992) is 
extended in Appendix D to consider polarized S waves and it is shown that general 
reciprocal relations can be established in the far field for an arbitrary localized 
scatterer. When averaged over many different scattering angles, these results are 
identical to (7.4). 

8. Homogeneous Sphere 

The results that have been presented thus far are valid for any inclusion that has 
spherical symmetry. To proceed further requires that solutions be obtained for the 
canonical scattering coefficients, and in order to do this it is necessary to specify the 
internal structure of the inclusion. Here we consider the special case in which the 
material properties of the inclusion are independent of the radial coordinate, in 
which case it is possible to obtain analytical solutions for the canonical scattering 
coefficients. 

The scattering of plane P waves by a homogeneous sphere was treated in our 
previous papers (KORNEEV and JOHNSON, 1993a, 1993b) where detailed interpreta- 
tions of the scattered fields were presented. That set of solutions has been expanded 
to include the scattering of S waves and the complete set of canonical scattering 
coefficients for a homogeneous spherical inclusion is given in Appendix A. In 
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addition to the elastic inclusion, formulas are also given for the special cases of  a 
fluid inclusion and an empty cavity. 

Consider the solutions given in Appendix A in the limit of low frequency. Then 
the most significant scattering coefficients are given by the asymptotic expressions 

3 
~3 2 (/~1 -- ~2) -]- #1 --  #2 

age=i6  1(3 ) (8.1) 

2 21 "~- #1 -I-#2 

a f e  = - i ~ \ Z  

where 

a ~e = i~ 3 ~ - 1 , 

2 

), a sP=  --i~ 3 ~ - -  1 --  
D'  

~f=- i~  ~ - 1 ,  

b PS = - i t ]  3 ~ - 1 (8.3) 

b~s = _;~3 g ~ -  1 (8.4) 

= ,~ ~ ~ -  1 (8.5) 

.t/s # 1 - # 2  
cf = ; (8.6) 

45 4#2 + #1 

= kpR, ;I = ksR (8.7) 

D -- 1 + ~ -  1 (3 + 2~2). (8.8) 

The coefficients c s and c s are obv.iously much smaller than the others and may be 
neglected at low frequencies. The case of a fluid inclusion is easily obtained from 
(8.1)-(8.5) by putting #1 = 0. 

The coefficients (8.1)-(8.5) may also be considered for the case of intrinsic 
attenuation inside the inclusion by assuming that the elastic parameters 21 and /~1 
have complex values. In this case the coefficients for l = 1 depend only upon the 
density contrast of the inclusion, whereas the other coefficients in the limit of large 
intrinsic attenuation go to the values 

r/3 
y~__2 b~ s= - i  7 (8.9) a(e=i~---3 ' afP=i2~33+27,2' 3 3 + 2 7 2  

7 bSS 1 (8.10) aSP = - i2~3  3 + 272, = #/3 3 + 272. 

These formulas represent the case of a small absorbing inclusion which captures all 
of  the energy which crosses its boundary. 
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It is convenient to describe the energy scattered by a homogeneous spherical 
inclusion with a nondimensional normalized scattering cross section. Dividing the cr 
from (6.1) by the area of the geometrical shadow, we have 

O" 
~ev 7cR 2- (8.11) 

For an incident P wave in the low-frequency limit we have 

3(2~ 1 Pl ?4 t ' 1 - / . 22  4 z 2 16 

8 @ ~ ~4{~2 (~22- 1~2-}-4 '1 -- //2 2)2 
/ 51 ~=O I/ 

4 2 (21 - -  . . . . .  Pl 2 2 
--9 4 , 1+7 

+ ~5 �9 (8.12) 

Similarly, for an incident S wave we get 

0"~r = O'SN P § 0"]~ S = ~43/3 1 ~ ~I -- /~2 

8 __ )2 3 /~1--/.2 2"~ ~4____Pl 1 + 
§  {.\P2 -- 5 ~ O -  

4 4f /p  1 )2 2 5 ]dl -- ]'L2 2"~ = ~  ~/L-1 (9+2)+~(27 +3) (8.13) 
#2 D J 

For the low-contrast case, where 

laxl 121-;q la~l I~',- #21 lapl Ip,-  p=l 
2 - 2 << 1, - << 1, - << 1, (8.14) 

# /~ P P 

the expressions (8.12) and (8.13) can be simplified to 

4 {~ 362+26/~ 2 2 ( @ )  2 8 ~ 2} 
27 {4 (8.15) ~'~-- ~ _~_~ §  §  
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and 

0-]~r=2@/~4 2(2+72) + 5  7 tz7 +3)  

~ 0-~rS ~- 8~ ~ 4 { ( ~ ) 2  -~- ~ ~ 2}. (8.16) 

For the scalar low-contrast case the normalized scattering cross section may be 
described by the simple formula (VAN DER HULST, 1957) 

o" N ~ 2 _ _ 4 sin a + 4 ( 1 -- cos a) (8.17) 
a 6/" 

where 

(~o2R ~o 2R'~ 
a = ~k- V(1) V(2) j (8 .18)  

and where the V (v) are chosen as either V(~ ) or V(~ >, according to the nature of the 
incident wave. This result can be explained by the interference of the incident and 
refracted waves propagating in the forward direction, where the parameter a is just 
the phase difference between these two waves in the far field. MOROCHNIK (1983a, 
1983b) derived this same expression for the low-contrast elastic case. More recently 
(KoRNEEV and JOHNSON, 1993b) compared this result with the exact solution for 
an incident plane P wave and found good agreement for contrasts of about 40%, 
except at very low frequencies. 

It is clear that formula (8.17) is asymptotic to the value 2 in the high-frequency 
limit. This is the result of the manner in which the problem was formulated, 
whereby, as mentioned in section 5, the secondary diffracted field contains both the 
scattered waves and any modifications of the primary incident wave. For the 
perfectly absorbing sphere, in which case there will be no waves that are actually 
scattered, the secondary field U~ must have a value sufficient to cancel the incident 
wave in the shadow and the normalized scattering cross section will have an 
asymptotic value of 1. 

9. Low-frequency Scattered Fields 

Expressions (8.1) (8.5) for the canonical scattering coefficients of a homoge- 
neous elastic sphere may be used to obtain low-frequency asymptotics for the 
scattered field (4.21). Thus, for the incident P wave (4.22) we have the far-field 
asymptotic solution 

Us~ = U~, + U~ (9.1) 
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f 12 (21 --/~2) § -- #2 
3 

2,(3 ) 
~'q +#1 +#2 

a) os0 t § 3 ~,~22 1) ~ (1  - 3c~ P 

(9.2) 

U ~ = B { - ( ~ 2 2 - 1 ) s i n O + ( ~ 2 - 1 ) T s i n 2 0 } O  (9.3) 

and for the incident S wave (4.24) the far-field asymptotic solution has the form 

< )  } U s = A  - 1  s i n 0 -  # i _ 1  ~s in20  cos~bf 
k\P- 

(\P2 ~22-1 ~cos20 cos40 

+ B { - ( ~ - - l ) + ( ~ - - l ) l c o s O } s i n 4 ) ~  

(9.4) 

(9.5) 

(9.6) 

(9.7) 

where the following notation has been used 

V c -ikpr c -iksr _ _  B = k ~  V 4 
A =k 24rt r ' 47t r ' V = ~ R 3 .  

and for an incident S wave they are 

The case of a low contrast between the material properties of the inclusion and 
the surrounding material (Born approximation) is defined by the conditions 

fa~[ =12' - 221<<1, !a#l - ]#' - #2] <<1, [c~PI-[Pl-P~2[ <<1, (9.8) 
)~ 22 # #2 /0 p 

and then the expressions (9.1)-(9.6) become the same as those obtained by 
GUBERNATIS et al. (1977a, 1977b). For an incident P wave these are 

{ ~2 @ 2@ } 
UP=A 2+2~  + - p  cos0 )c+2#c~ 20 f (9.9) 

-6P  sin 0 + 7 - -  sin20 (9.10) 

U s = A { ~  sin0-66~-Hsin20}cos# qSf (9.11) 

- - - c o s 2 0  c o s ~ b O + B -  + - - c o s 0  sinqS~. (9.12) 
# # 
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10. Numerical Results 

In order to illustrate some of the properties of  the solutions derived in this 
paper, numerical calculations were performed for a few sample problems involving 
a homogeneous spherical inclusion. For  the first set of examples the material 
properties of the surrounding medium were chosen to be representative of  a typical 
continental crust: 

V(p 2~ = 6.0 km/s, V~ 2~ = 3.5 kin/s, P2 -- 2.7 g/cm 3. 

Five different models were used for the inclusion, with the properties chosen to 
represent a variety of different types of obstacles that might be encountered in the 
earth. The elastic parameters for these five models are as follows: 

model 1--V(pl~=7.5km/s,  V(~l~=4.4km/s, p l = 3 . 1 g / c m  3, 

model 2 - -  V}) ~ = 4.5 km/s, V~ 1~ = 2.6 km/s, Pl = 2.3 g/cm 3, 

model 3 - -  V(p 1~ = 3.4 km/s, V(~ 1~ = 0.0 km/s, Pl = 2.7 g/cm 3, 

model 4 - -  V(p 1) = 1.4 km/s, V~ 1~ = 0.0 km/s, Pl = 1.0 g/cm 3, 

model 5 - -  V(p 1) = 0.0 km/s, V(~ 1~ = 0.0 km/s, Pl = 0.0 g/cm 3. 

For each of these models the scattering problem was solved for an incident plane 
P wave and also for an incident plane S wave. The results of the calculations are 
presented by plotting the normalized scattering cross sections G~ and o -s as a 
function of the parameter ~ - 32 = mR/V(p a~. 

Models 1 and 2 simulate high-velocity and low-velocity inclusions, respectively, 
with the difference in material properties being about 20% in each case. Figures 1 
(model 1) and 2 (model 2) present the normalized cross sections for these two types 
of inclusions. The general pattern of the total scattered field in these cross sections 
is described by an increase a s  (.0 4 at low frequencies which merges into long large 
oscillations about a constant value of 2.0 at higher frequencies. These long 
oscillations are caused by the interference between the waves that propagate 
through the inclusion and those that propagate around it (VAN DER HULST, 1957), 
and the asympotic value of 2.0, as discussed earlier, results from the fact that the 
scattered field contains both the waves scattered by the inclusion and the distur- 
bance of the primary field. Superimposed on this pattern, particularly evident in 
Figure 2, are short small amplitude oscillations caused by multiple reflections within 
the inclusion. Because the low-velocity inclusion tends to focus energy within the 
obstacle considerably more than the high-velocity inclusion, these short oscillations 
are far more pronounced for the low-velocity inclusion. 

Of particular interest in Figures 1 and 2 is the comparison of the scattering cross 
sections for incident P waves and S waves at low frequencies where the wavelengths 
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Figure 1 
Normalized scattering cross sections for an elastic homogeneous sphere as a function of the parameter 
kpR = o)R/Vp. These results are for the high-velocity inclusion which is listed as model l in the text. The 
top two panels are for the case of an incident P wave, while the bottom two panels are for an incident 
S wave. The panels on the right are expanded versions of those on the left for small values of the 
argument. The dashed line represents the energy scattered as P waves, the dotted line represents the 

energy scattered as S waves, and the solid line represents the total scattered energy. 

are  larger  t h a n  the  s ize  o f  the  scat terer .  In  this  f r e q u e n c y  r a n g e  the  P ~ S s c a t t e r i n g  

is m u c h  s t r o n g e r  t h a n  the  S --, P sca t ter ing ,  in a g r e e m e n t  w i t h  th e  resu l t s  d e r i v e d  in 

s e c t i o n  7. F o r  an  i n c i d e n t  P w a v e  the  e n e r g y  s c a t t e r e d  i n t o  the  S f ie ld c a n  e x c e e d  

tha t  s c a t t e r e d  i n t o  the  P f ie ld,  w h e r e a s  in the  case  o f  the  i n c i d e n t  S w a v e  the 

a m o u n t  o f  e n e r g y  s c a t t e r e d  i n t o  the  P f ie ld is n e g l i g i b l e  c o m p a r e d  to  tha t  s c a t t e r e d  

i n t o  t h e  S f ield.  
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Figure 2 
Similar to Figure 2 for the low-velocity inclusion which is listed as model 2 in the text. 

Models 3 and 4 are fluid inclusions, with model 3 simulating an inclusion of  

molten rock and model 4 simulating an inclusion filled with water. The scattering 
cross sections for these fluid inclusions are plotted in Figures 3 and 4 and show a 
pattern similar to that of  the elastic inclusions except that all of  the features are 
shifted toward lower frequencies. Because of this the scattering reaches significant 
levels at rather low frequencies where the size of the inclusion is still much smaller 
than the wavelength of  the incident wave. The observation made of  the elastic 
inclusions that the P ~ S scattering is much stronger than the S--+ P scattering is 
even more pronounced for the fluid inclusions, with the scattered S field dominating 
the scattered P field at low frequencies regardless of  whether the incident field is a 
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Figure 3 
Similar to Figure 1 for the fluid inclusion which is listed as model 3 in the text. 
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P wave of S wave. In addition, for the case of  the incident P wave the scattered S 
field is now comparable to the scattered P field over the entire frequency range. 

For  the case of  water-filled inclusion (Figure 4) the resonant features of  the 
scattering cross sections are particularly conspicuous. The positions of  the reso- 
nance peaks correspond to the real parts of  the complex roots of  the determinant 

(A.9) contained in the denominator  of  the canonical scattering coefficients. Some of 
these roots (including the first one) may be obtained by letting l = 1 in (A.9), which 
leads to the equation 

J l ( ~ l )  coN 
J2(~l )  ~l - - 0 ,  ~1 = v{pl )" (10 .1 )  

The first few roots of  this equation are ~l ~ 2.1, 5.9, 9.2 . . . . .  
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Figure 4 
Similar to Figure 1 for the fluid inclusion which is listed as model 4 in the text. 

In model 5 the inclusion is a hollow cavity and the scattering sections are shown 
in Figure 5. It is useful to think of this model as a modification of the water-filled 
inclusion of model 4 in which V(p 1) and Pl are reduced to zero. This helps explain 
why the scattering cross sections of  Figure 5 are essentially smoothed versions of 
those in Figure 4, with the main differences being related to the fact that the cavity 
has no resonances associated with the scattered field within the inclusion. The fact 
that the general patterns of  the scattering cross sections of  Figures 4 and 5 are 
similar indicates that this pattern is controlled primarily by the vanishing of the 
shear modulus within the inclusion. 

It  is worth pointing out that the properties of  the material surrounding the 
inclusion and wavelengths of the incident waves are identical in Figures 1-5. 
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Figure 5 
Similar to Figure 1 for the cavity inclusion which is listed as model 5 in the text. 

However, it is clear that the c o m m o n  features of  the scattering cross sections are 
found at rather different frequencies for the different types of  inclusions. This result 
can be explained if one describes the frequency dependence of  the scattering cross 
sections in terms of  the wavelength of  the scattered field rather than the wavelength 
o f  the incident wave. Note  that in applying this reasoning, the wavelengths o f  the 
scattered fields both inside and outside the inclusion must be considered. This 
general principle explains why the scattering cross sections of  the S field are always 
shifted toward lower frequencies with respect to those of  the P field (compare the 
upper and lower panels in Figures 1, 2 and 3), why low-velocity inclusions have 
scattering cross sections that are shifted toward low frequencies with respect to 
those o f  high-velocity inclusions (compare Figures 1, 2, 3, 4 and 5) and why the 
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position of the resonance peaks in the scattering cross sections depends upon the 
velocity within the inclusions (compare Figures 3 and 4). 

This same type of reasoning about the wavelength of the scattered field also helps 
explain the general result that the P ~ S scattering is stronger than the S ~ P 
scattering at low frequencies. From section 9 it is clear that the low-frequency 
scattering energy is proportional to (R/wavelength) 4. Such a result favors the 
scattering of S waves because of their shorter wavelength. Another way of saying this 
is that, using the scale of wavelengths, an inclusion appears larger to an S wave than 
to a P wave and thus it is scattered more intensively. What is not so obvious is that 
the ratio in the scattering intensities for the converted waves should be independent 
of frequency and proportional to the squared ratio of the velocities. However, it is 
clear in Figures 1-5 that the shape of o-fz s curve is always identical to the 
corresponding o-SuP curve, with the amplitudes of the curves scaled according to (7.1). 

In section 8 it was pointed out that the case of an inclusion with intrinsic 
attenuation can be treated by assigning complex values to the elastic parameters 
within the inclusion. Examples of the normalized scattering cross sections for this 
type of an inclusion are shown in Figures 6 and 7. The attenuation was characterized 
in terms of the quality factor Q1 where 

Q ;1 = Im{)~l } _ Im{ltl } 
Re{21} Re{#1 }" (10.2) 

The calculations were performed for the low frequency case where kpR = 0.05 and 
the figures show how the cross section changes as the attenuation of  the inclusion 
is increased. Figure 6 shows the results for the high-velocity inclusion listed earlier 
as model 1, and Figure 7 is for the low-velocity inclusion of model 2. The results 
are quite similar for the two types of inclusions. For  small attenuation the scattering 
cross sections are just the low frequency values shown in Figures 1 and 2. As the 
attenuation is increased the scattering cross sections also increase and approach the 
limiting values associated with the coefficients given in (8.9) and (8.10). The 
attenuation affects the scattered S waves considerably more than the scattered P 
waves, as the scattering cross sections for the incident S wave reaches values which 
are about 3 times those for the incident P wave. Furthermore, for both cases of an 
incident P wave and an incident S wave the scattered field consists almost entirely 
of S waves. 

The basic solutions presented in this paper are completely general in that they 
can be applied over the entire frequency range and to an inclusion of any size. For  
instance, the scattering cross sections of Figure 3 can be used to provide a rough 
estimate of scattering by the earth's fluid core. More appropriate results can be 
obtained by choosing the following material properties to represent the earth's 
mantle and outer core: 

V(p 2~ = 11.3 km/s, V (2) = 6.2 km/s, P 2  = 5.0 gm/cm 3 

V(p 1~ = 9.9 kin/s, V~ ~ = 0.0 kin/s, Pl = 6.0 gm/cm 3. 
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Figure 6 
Normalized scattering cross sections for an anelastic homogeneous sphere as a function of the 
attenuation quality factor Q-1 of the sphere. These results are for the high-velocity inclusion which is 
listed as model 1 in the text with the elastic constants within the sphere modified to have complex values. 
The frequency is constant with kpR = mR/Vp = 0.05. The top two panels are for the case of an incident 
P wave, while the bottom two panels are for an incident S wave. The panels on the right are expanded 
versions of those on the left for small values of the argument. The dashed line represents the energy 
scattered as P waves, the dotted line represents the energy scattered as S waves and the solid line 

represents the total scattered energy. 

T h e s e  ve loc i t i e s  we re  c h o s e n  to  m a t c h  t h e  a v e r a g e  t r a v e l  t i m e s  t h r o u g h  t he  m a n t l e  

a n d  co re ,  a n d  t he  d e n s i t i e s  we re  c h o s e n  to  m a t c h  t he  c o n t r a s t  in  a c o u s t i c  i m p e d a n c e  

a t  t he  m a n t l e - c o r e  b o u n d a r y .  T h e  r a d i u s  o f  t he  c o r e  was  t a k e n  as  3482  km.  F o r  th i s  

e x a m p l e  i t  is i n s t r u c t i v e  to  c o n s i d e r  t he  c o m p l e t e  s o l u t i o n s  to  the  s c a t t e r i n g  p r o b l e m  

in t h e  t i m e  d o m a i n .  T h e  e x p a n s i o n  coe f f i c i en t s  f o r  t h e  i n c i d e n t  f ield o f  (4 .14)  we re  
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Figure 7 
Similar to Figure 6 for the low-velocity inclusion which is listed as model 2 in the text. 

chosen to represent a point pressure source at a radius of 6300 km, and then the 

scattered field of (4.21) was evaluated and transformed from the frequency domain 

to the time domain. (KoP, NEEV and JOHNSON (1993a) show how the solution for 
a point source is easily obtained from the plane wave solutions.) The spectrum of 

the pressure at the source was flat below a corner frequency corresponding to a 
period of 30 sec. The total solutions, including both the incident and scattered 
fields, are shown in Figure 8 at 6-degree angular intervals for a radius of 6371 km. 

Note that this is an example of high-frequency scattering, as kpR has a value of 730. 
There is a variety of interesting features on the seismograms of Figure 8, but the 

discussion here will concentrate primarily upon some of the diffraction effects. A 
good example of this is the arrivals that fill in the gap between the PcS and PKS 
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Figure 8 
Synthetic seismograms calculated for a homogeneous fluid inclusion that simulates the earth's core. The 
seismograms are calculated every 6 degrees at a radius of 6371 kin. The source is a point pressure pulse 
at 0 distance and a radius of 6300 km. The panels on the left are the radial components of motion and 
those on the right are the angular components of motion. The upper two panels are late-time versions 
of those below with the amplitudes increased by a factor of 10. The dotted lines are the arrival times 

predicted by geometrical ray theory. 

phases.  The  geometr ica l  ray  arr ivals  for  the PcS wave end at  a d is tance  o f  72 

degrees and  those o f  the P K S  wave begin at  122 degrees, bu t  in F igure  8 this gap  

is comple te ly  filled by di f f racted waves. A n o t h e r  example  is the P 2 K S  phase  which 

ends wi th  a caust ic  at  a d is tance  o f  175 degrees,  bu t  s t rong diffracted waves extend 

out  to 180 degrees and  back  to less than  150 degrees where they merge with  the 

PKS phase.  The  s i tua t ion  is ac tual ly  more  compl ica ted  than  this, as the P3KS 

geometr ica l  ar r ival  extends out  to 115 degrees and  then is con t inued  by  di f f rac ted  

waves that  merge  with the P2KS wave near  t80 degrees, while the P4KS geometr i -  

cal ar r ival  extends to 55 degrees and  is con t inued  by diffracted waves near  100 

degrees. Thus  the waves P4KS,  P3KS,  P2KS,  P K S  and PcS a long  with their  

d i f f rac t ions  all come together  to fo rm a complex  and  con t inuous  g roup  o f  waves 
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that appear on these seismograms between a distance of 60 degrees and time of 
2300 seconds, extend out to 180 degrees and 1600 seconds, and then continue back 
to a distance of 0 degrees and 700 seconds. Increasing the amplitude of the 
seismograms would allow this same type of pattern to be extended to include the 
P5KS wave and other higher order core waves of this family. The same type of 
phenomenon also occurs for the PKP family of waves, although these waves are of 
slightly lower amplitude than the PKS waves and thus not as easily observed in 
Figure 8. 

The distances mentioned above for the regions of geometrical arrivals and 
diffracted waves will be slightly different in the real earth because of the radial 
variation in velocity in the mantle and core. The seismograms will also be 
considerably more complicated because of the additional waves caused by the inner 
core, the surface of the earth and S waves generated at the source in the case of 

earthquakes. However, the relative amplitudes of the different waves, the distor- 
tions in the wave forms, and the interaction between the geometrical and diffracted 
arrivals shown in Figure 8 should be generally applicable to long period waves in 
the earth. 

There is one other feature present in Figure 8 which is worth mentioning. On 
the radial component at a distance of 180 degrees and at a time of about 2500 sec 
there is just discernible a long period wave (period of about 600 sec). This is an 
interface wave of the Stonely or Scholte type which travels on the mantle-core 
boundary with a velocity of about 4.4 km/sec. RIAL and CORMmR (1980) pointed 
out that there are a variety of unique wave propagation effects, some of which are 
unexplained, which appear in the antipodal region and provide a rich source of 

information regarding the structure of the earth's interior. Thus calculations such as 
those in Figure 8, particularly if extended to higher frequencies, might be quite 
useful in the interpretation of observational data. 

11. Discussion and Conclusions 

The primary purpose of  this paper is to present in a convenient form the exact 
solutions for the scattering of P waves and S waves by a spherical inclusion and to 
point out some of the important properties of these solutions. However, it is also 
of value to consider whether these results can be used to make general inferences 
regarding the scattering of elastic waves in the earth. In doing this, the first point 
which must be discussed is the applicability of results for a spherical inclusion to the 
conditions in the earth in which the shape of the inclusion is often unknown, but 
most likely different from that of an exact sphere. Here one can appeal to the fact 
that scattering by a sphere represents a canonical problem for a more extended class 
of objects with relatively simple and smooth boundaries, and thus reason that these 
results should apply in an approximate manner to a wide class of objects having 
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these properties. In the low-frequency range (Rayleigh scattering) an even stronger 
argument is possible, as was shown in section 9 that for this case the solutions 

depend only upon the volume of  the inclusion and not upon its shape. Thus the low 
frequency results presented in this paper should be applicable to small 3D inclu- 
sions of any shape in the earth. 

In the low-frequency range there is a strong asymmetry in the relative scattering 
of P waves and S waves. The P --* S scattering is generally far more intensive than 
the S ~ P scattering. This is explained in a qualitative sense by the fact that the 
inclusion appears to be larger to the S wave because of its shorter wavelength and 
the fact that the scattering is controlled by the wavelength of the scattered wave 

rather than the wavelength of the incident wave. It is common for an incident P 
wave to have more energy in the scattered S field than the scattered P field, whereas 
for an incident S wave most of  the scattered energy is in the S field. This suggests 
that the coda of P waves should contain a significant proportion of  S waves, while 
the coda of S waves should be predominantly S waves. 

This asymmetry in the scattering conversion of P and S waves can be quantified 
for the case of the spherically symmetric scatterers considered in this paper. It was 
shown in section 7 that the mean intensity of the P ---, S converted waves is 2 V 2 / V 4 

times the mean intensity of the S --, P converted waves, and this ratio is independent 
of frequency. For more general scatterers it is possible to write reciprocal relations 
such as those given in Appendix D, but it is not obvious how these can be 
converted to intensity ratios such as that just given for a spherical scatterer. 
However, at low frequencies in the domain of Rayleigh scattering where only the 
volume of the inclusion is important, it is conjectured that the ratio of the mean 
intensities of the converted waves will approach the value obtained for spherical 
scatterers. Thus this strong asymmetry in the scattering conversion of P and S 
waves is likely to be a general result when the  wavelengths are large compared to 
the size of the inclusion. 

The scattering from a fluid inclusion is more intensive than the scattering from 
an elastic inclusion, with the general frequency dependence of the scattering being 
controlled by the contrast in the shear modulus. Superimposed upon this frequency 
dependence is a series of  resonance peaks which are controlled by the compressional 
velocity of  the fluid. The potential exists here to use the spectrum of the scattered 
waves to estimate the dimensions of  the scatterers, although the case in which there 
is a distribution in the size of  the scatterers would tend to smooth out the resonance 
peaks. Regardless, the amount of energy scattered into the S field by an incident P 
wave is an effective diagnostic which can be used over the entire frequency range to 
identify fluid inclusions. 

In the case of a low contrast between the material properties of the inclusion 
and the surrounding medium only a few of the scattering coefficients need be 
included in the low-frequency range and they have a simple dependence upon the 
material properties (equations (8.1)-(8.6)). The form of these coefficients is suit- 
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able for use in inverse problems, with some of the coefficients depending primarily 
upon the contrast in density, others depending primarily upon the contrast in shear 
modulus, and others depending upon the contrast in bulk modulus. 

One feature of the low-contrast approximation, as is true of most Born-type 
approximations, is that it does not satisfy conservation of energy. However, this is 
easily remedied. The equations (5.8)-(5.10) are derived from (5.2) and are essen- 
tially statements of conservation of energy. The right-hand sides of these equations, 
which involve only the real parts of the canonical scattering coefficients, represent 
the energy terms that are coherent with the primary field and thus account for the 
change in energy of the primary field that must occur when additional scattered 
fields are generated. Applying this to the low-contrast case, we note that the 
coefficients (8.1)-(8.6) are completely imaginary and represent only the scattered 
fields, the real parts which represent the change in the primary field having been 
dropped in the approximation. However, these real parts can be recovered from the 
expressions (5.8)-(5.10), and including the real parts will restore the conservation 
of energy. Note that because the coefficients (8.1)-(8.6) all have an (co)3 frequency 
dependence, the real parts of these coefficients will have an (co)6 frequency depen- 
dence, which in most cases will make them small enough to be neglected. However, 
in some situations, such as studies of attenuation of primary waves due to 
scattering, these real parts of the scattering coefficients should be included in order 
to achieve a formulation more compatible with energy conservation. 

A caveat involving intrinsic attenuation should also be mentioned. As men- 
tioned in section 8, the canonical scattering coefficients can be modified to include 
intrinsic attenuation by introducing complex elastic parameters. However, in this 
case some of the relations, including (5.8)-(5.11), are no longer valid because strain 
energy is no longer conserved. The analysis of the low-contrast approximation is 
still possible, as introducing complex elastic parameters into (8.1)-(8.6) produces 
real parts of these coefficients which are proportional to (co)3 and which cause an 
attenuation of the primary field due to the intrinsic attenuation which dominates 
that due to the scattering. 

Appendix A 

Canonical Scattering Coefficients for the Field Exterior to a Homogeneous Sphere 

Consider the case of a homogeneous elastic sphere of radius R with elastic 
parameters 21, #1 and density p~ surrounded by a medium having elastic parameters 
22,/~2, and density P2 with the continuous boundary conditions (4.17). The canon- 
ical scattering coefficients have the analytical representations listed below. For 
comparison, HINDERS (1991) gives equivalent expressions for the solution in terms 
of displacement potentials. 
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a; P=App bf s_APs aS P_Ase bS s_Ass (A.1) 
A '  A '  A '  A '  

I"l~ll ~llJl_ l (l~]1)Jl(l12 ) -- l'12Jl(111)Jl_ l (l~2) § (l § 2)(1--~22)Jl(~1)Jl(l~2 ) 
c~ = 1'2 

/ 
r/lJ,-1(///1)hl(//2) -- Y/2J'/(/r/l)hl - 1(~2) § (1 § 2 ) [1  - - rJ | j l ( l~ l )h l ( t l2  ) 

#2 \ #2/ 

(A.2) 

where 

1,2 2 

l )  '01 F h ' (~2) j l (~I )  .q_J/(~l) h/(~2) A21~ 
- ( 2 l  § P-221_ ~2 ~11 AI2 ~I ~2 

- qA, [A2 + (1 + 2)h,+ 1 (r (r/a) + (l - 1)h,_ 1 (~2)h,_ 1 (~/2)] 

+ q & Aa[A1 + (I + 2)j~+ ~ (~l)J~+ 1 (n,) + (1 - 1)j~_, (G)J~-~ (n~)] /32 

+ q2(t - 1)(I + 2 ) & & }  (A.3) 

= i ~ ~" 
A1 

Aps 21 + 1 (21 + 1 q((l - 1)(1 + 2)q - 1) 

J'(~l)J'OIx) Pl ( 1 - " ~ - ( l  § 2)(2l § ql P2 D2 

( )J/<{l)~ Pl ~({,) j~(t/1) + ~ + i  (t/l (A.4) + q ~  2j,+ rh {, J J  

Asp = 7321(I § 1)Ae s. (A.5) 

An expression for Ape can be derived from (A.3) by substituting for the functions 
hk(~2) (k = l -  1, l, I + 1) the corresponding functions --Jk({2)- Analogously, Ass 
can be derived from the same expression by substituting for the functions hk(q2) 
(k = l - 1, l, l + 1) the corresponding functions -jk(t/2). The following definitions 
have been used in equations (A.2)-(A.5) .  

A~ = ( l +  1)j,+,(~,)jr ,(th) +/j t_,(~,)j ,+,(r/I)  

/ai m = (l + 1)hi+ 1 (~2)hl_ 1(t]2) § lh l_ 1 (~2)hl+ 1 (t/2) 
(A.6) 

/~12 = (l § 1)j/+ i (~ l )h l_  1(/'/2) § 0"1_ 1 (~l)hl+ 1(~2) 

A2~ = (l + 1)h,+ 1 (g2)J, 1 (r/x) 4- lh,_ 1 (g2)J,+ ~ (r/,) 
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q = ~  1-~j=rl--~2 1 #2, ,t 72=V(2) 

(.oR oR V(1) = 4~+  2#1 V(sl)= #~p~ 
{~ = V ~ ,  r/' = V ~ ,  p~ ' 

(oR o R  V(2) = ~ / ~  + 2/,12 V~2) = #~2 (A.7) 
~2 = V(2), /~2 = V~2), P2 ' " 

For the case of a fluid within the sphere (~  = 0), the above expressions reduce to 

cS = (I + 2)j,(r/2) - r/z/,_ 1 (r/2) (A.8) 
(l + 2)ht(r/2 ) - rl2h l_ , (112) 

{ 1" h ~ (~1) ~11 ) ' (~)h  / --J,(~l) A = (2l + ) ~ - 2  Ar/2)~,jt+ 21+ 1 1 

- (2 l  + l) PlJ'(~) hl(r/2)( h'+l(~2) - I P2 ~7-1 ~ h,(~2) ) 

+ 1 ( ~ 1 ) - -  J , (~ l )  [ A 2 + ( l + 2 ) h l + l ( ~ 2 ) h l + l ( r / 2 )  

+ ( l -  1)h l t(~2)ht_~(t/2)] + 2 P 1 A 2  2j/+l(~l) Jz(~l) 
- r/2 P2 k ,  

l 

r/3 {( j  l J ' ~ 1 ) ~ ( 1 - ( l - 1 ) ( l + 2 ) 2 ) +  jl({')p'} (A.10) 

ZXsv = 73l(l + 1)lXes. (A.11) 

Expressions for Ae,, and for Ass can be derived from A in the same way as in the 
elastic case. 

For the case of a cavity the above expressions can be further simplified to 

(t + 2)j,(r/2 ) -- r/z/',_ , (r/2) c s = (A.12) 
(I + 2)hi(r/2) -- tl2ht_ i (t/2) 

A = q 22 ~ 3 { ~  hi(r/2)+4(l-(2ll)(1 + 2 ) A 2 +  1)/3 

- 2  [~X2 + (t + 2)h,+1(~2)h,+1(r/2) + (t-1)h,_l(~2)h,_,(r/2)] (A.13) 
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Aps = 2i tl~ ( l _ ( l _ l ) ( l + 2 )  2 )  2l + 1 ~ (A.14) 

Asp = 73/(/+ 1)Aes. (A. 15) 

Expressions for Ape and for Ass can be derived from A as in the previous cases. 

Appendix B 

Canonical Scattering Coefficients for the Field Interior to a Homogeneous Sphere 

The diffracted field inside a homogeneous elastic sphere may be calculated using 
the expression (4.21), where all the spherical Hankel functions h~ are replaced by 
spherical Bessel functions Jk and where the wavenumbers kp and ks are taken for the 
inner medium v = 1. The canonical scattering coefficients for the inner medium 
have the forms 

a;~ A~ bU A~ aS ~ Asp bff A~s (B.1) 
A '  A '  = A '  = A 

t~22 (~22) 0--1 c s = i  /~ q,q~,_l(t/,)h,(~/2) - ~/~J',(q~)ht ,(q2) + ( l + 2 ) q 2  1 - j,(q,)h,(tl2 ) 

(B.2) 

with 

�9 tl~ Pl JlOh) ApP=t 2~ ~ l 1 - - - - ( l  + 2)(2l + l)q +(l(l + 2)q-1)j,_lOh) 
P2 / ql 

+h/-,(th)[(~+l(l+2)q~Jt(th)-qj,_,(th)]}/ th (B.3) 

~3 2 ( l  + 2 ) h l + l ( ~ 2 ) J l + l ( t l l )  q - ( [ - -  1 ) h l _ , ( ~ 2 ) J l _ l ( t l l  ) 1 - - - -  Z~Sp = i - -  

- ( 2 l +  1)q_ jlO71) 1 711 ~2 (B.5) 
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Ass=i  (2l + l)2 (l + l)(21+ l)q2j, ,)ht({z)~2 I -p~ 

172 ( " 1  -P22~lhl-l(~2)jl(r ~2 - (2l + 1) ~2 \h,(~2)Jz_ (41) 

where the expression for k is given by (A.3) and the notation (A.6) has been used. 
For the case of a fluid within the sphere, the above expressions can be reduced 

to 
c~ = 0 (B.7) 

(l 2 -  (B.8) 
kpp = 1 2 ~  172 1~2 

Aps = 0 (B.9) 

2l(l(2l+ + 1)1) .( h, ({~)'~ Asp = i ~  h,+,(~2) - ( l -  1) ~7 -2  ) (B.10) 

Ass = 0 (B. t 1) 

where the expression for A is given by (A.9). 

Appendix C 

Scattered Fields Produced by Incident Plane P and S Waves 

For the case of the incident plane P wave (4.22) the scattered field in the outer 
medium has the form 

Use = Upp + Ups = ~ t[afPhl+l (kpr) + lbfShl+, (ksr)lY~o 
l ~ 0  k 

+ [ --a;J~hl_l (kpr) -Jr- (l + 1)bfSh,_, (k,.r)lY;} e 
i(a]2)(l + 1) 

l>~ 0 gpr 

hl(kpr) 0Pt(cos 0) ~]  
• &(cos 0)f kpr O0 

hz(k,r) ~ 
+ b f  s l(l + 1) - -  t a cos  0)f, 

ksr 

+ (h,_, (<r) - h,(<r) e e,(co  

k 
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For  the case of the incident plane S wave (4.24) the scattered field in the outer 
medium has the form 

U,c Use + Uss= ~ o s o = {el,,c l hl(k,r)Yt.~ 
l,m 

0 S P  0 S S  + + [blmat hi+ l(kpr) + lblmbl ht+ i(k~r)]Y/., 

+ [  o sp o ss 1)blmbl hi_ 1 -blma,  h t - l ( kJ )  +( l  + (k,r)]Ytm } (C.2) 

in terms of  the spherical vectors (3.1), and 

Usc= USE + Uss 

,>_I 21(l + 1) 2 cos 0 aSP hi-1 (kpr) - (l + l) ~ ]  

hl(k,r) q~ 1 . 
- bSSl(l + 1) k--~7-j j r z  (cos 0)e 

h,(ker) 
+ cos q~ icSQl(O)hl(kj) + aSeQ2(O ) kpr 

4- b~S O2(O)(l h'(k~r r) - hl- l (ksr) ) ]O 

h,(k/) 
-- sin q5 icSQ2(O)hl(k,r) + aSPQl(O ) kpr 

in a spherical coordinate system, where 

1 
b~m - 2l(1 + 1) (t(l + 1)~m, ~ - 3,~,1 ) e-i(~/2xt+ ~) 

2 l +  1 
cOrn - -  21(l + 1) (l(l + Dam,_ 1 + 3m, l ) e -,(~/2~(l+ 1) 

O~ (0) = p2 , (cos 0) + l(l + 1)P~ (cos 0), Q2(O) = l(l + 1)P~ 0) - p2(cos 0). 

Appendix D 

Relative Strength of  P to S and S to P Scattering from Reciprocity 

The purpose of  this appendix is to extend the analysis of  AKr (1992) to the case 
of  P and S waves having arbitrary polarizations. Consider a localized scatterer with 
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a spherical coordinate system centered upon it. At the point (r, 0t, 051) is located the 
unit radial force 

re(r, 0,, 05~) = f. (D.1) 

The scattered S wave generated by this force and observed at a second location 
(r, 02, is 

ups(r, 02,050 = Upsl(r, 02, 42)0 + Ups2(r, 02,052)4; 

= Ups(r, 02, q52){cos (c~2)0 + sin (e2)~} (D.2) 

where e2 is the polarization angle of the S wave at the second location. It has been 
assumed here that the distance r is sufficiently large so that only far-field parts of 
the solution need be included. At this second location two separate forces are 
considered. The first is the unit transverse force 

fs l(r ,  02,052) = O. (D.3) 

At the first location (r, 01,051) this gives rise to a scattered P wave with displace- 
ment 

Uslp(r, 01,051) = uslp(r ,  01,051)f. (D.4) 

The reciprocal theorem states that 

re( r, 01,051) IIslp(F, 01, 051) = f s l (  r, 02,052)' Ups( r, 02,052) (D.5) 

and in the present case, using (D.1)-(D.4),  this means that 

usle(r,  0~, 051) = Uesl(r, 02,052). (B.6) 

The second force to be considered is the unit transverse force 

fs2(r, 02,052) = q~ (D.7) 

which produces a P wave at the first location with displacement 

Us2p(r, 01, 051) = US2p(r, 01, 051) ~" (D .8 )  

Applying the reciprocal theorem in this case yields 

Us2p(r, 01,051 = Ups2(r, 02,052). (D.9) 

The two expressions (D.6) and (D.9) are the reciprocal relations for two orthogonal 
polarizations of the S wave. In general both polarizations will be present in a 
scattered P wave and thus both reciprocal relations are required. 

In the vicinity of the scatterer the amplitude of the P wave incident from the 
first location will be 

1 

u(P) - &zp V~r  
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and that of both S waves incident from the second location will be 

1 u(~) --  _ _  
4~p V2s r" 

Thus (D.6) can be written in terms of amplitude ratios as 

Usle(r, 01, ~bl) V2s lAPs1( r, 02, 02) 
.g> .g> 

and (D.9) becomes 

(D.IO) 

where 

cos(6) = cos(02) cos(01) + sin(02) sin(01) cos(02 - q51). 

For an object with spherical symmetry this result holds for all directions and, 
furthermore, the two positions (01, q51) and (02, ~b2) can be freely interchanged. To 
duplicate the problem considered in this paper let the P wave be incident from 
(01 = r~, q~l = 0) and then 

Ups(F , O, if)) ~- IAPsI(F , O, q~)O= - -Ups (F  , O, ~ ) 0 .  

Us2p(r, 01, V2s Ups2(r, 02, 4)2) 
- ( D . 1 1 )  

These are exact relationships for the two polarizations of the S wave and they show 
that in each case the P ~ S scattering is stronger than the S--> P scattering by a 
factor of (Vp/V s)2. The result (D. 10) with ~b I = ( ~ 2  = 0 is essentially that derived by 
AKI (1992). While these results are very general, they are not entirely suited to the 
scattering problem. First, they deal only with the separate components of the 
motion and cannot be converted to equivalent expressions involving the total 
amplitude of the motion unless the polarization angle of Ups is determined. 
GUBERNATIS et al. (1977, 1979) have given general formulas for the far-field 
scattered P and S waves and specific formulas for a few special cases of homoge- 
neous inclusions which can be used to determine this polarization angle, however 
the results are not particularly simple. The second problem with these reciprocal 
relations is that they involve P waves and S waves incident from different 
directions, and the geometry of most interest in scattering problems involves P and 
S waves incident from the same direction. 

The reciprocal relationships (D.10) and (D.11) can be further simplified in the 
case of symmetrical scatterers. In the case where the scattering object possesses 
cylindrical symmetry about the (01, q~l) direction, the polarization angle of Ups is 
given by 

sin(01) sin(~b 2 - qbx) 
sin(c~2) = 

sin(6) 
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Also let the S wave be incident from this same direction (02 = ~, q52 = 0) and 
without loss of generality take fs2 = 0. Then use (D.6) and the spherical symmetry 
to write 

Usp(r, O, ~a) = ue,s, ~ (r, re, O) 

= cos(40ups(r, ~, 0) 

= cos(q~)UslA,', 0, 40. 

Substituting these results into (D.10) yields 

0, q~) v~ cos(q~) ups(r, 0, 0) (D.12) 

This result is more applicable to the scattering problem as it involves the total 
amplitude of the P and S waves and both the incident P wave and the incident S 
wave arrive along the same direction. It is identical to (7.8) which was obtained 
from the exact far-field solution for a homogeneous spherical scatterer. Note that 
the angle 4) in this result is just the angle between the polarization vector of the P 
wave and the plane containing the polarization vector of the S wave and the 
scatterer. 

The reciprocal relationships can also be simplified by considering the average of 
an ensemble of random scatterings. For the case of an arbitrarily oriented scatterer, 
the two polarizations of the scattered S wave are equally probable, so the most 
likely situation is 

w 

Also, on the average, 

u~,p(r, O, O) = u~2p(r, O, 4)) = U~p(r, O, 4)). 

Then (D.IO) and (D.11) can be combined to yield 

ups(r, O, ~) _ . /2V~ .~p(r, O, ~) 
(D.13) 

u~) v~ ug) 

When this expression is squared to obtain intensities, it is identical to (7.4). 
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